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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2302

A GENERAL THROUGH-FLOW THEORY OF FLUID FLOW WITH SUBSONIC OR SUPERSONIC
VELOCITY IN TURBOMACHINES OF ARBITRARY HUB AND CASING SHAPES

By Chung-Hua Wu

SUMMARY

A general steady through-flow Yheory of nonviscous fluid in turbo-
machines’ of arbitrary hub- and casing -wall shapes with subsonic or
supersonic velocity is presented. The theory is applicable to both
direct and inverse problems and is derived primarily for use in turbo-
machines having thin blades of high solidity with a simple approximate
correction factor for blade-thickness effect. Through the use of the
stream function, the continuity equation and the equation of motion in
the radial direction are combined to form a principal equation for the
present problem. The principal equation contains some terms that are
either prescribed or to be determined by other equations defining the
problem. Two forms of the principal equation are obtained for the two
main groups of current compressor and turbine design in which the vari-
ation of tangential velocity and the variation of the ratio of tangen-
tial to axial velocity throughout the blade region are given. When the
tangential velocity is given, the principal equation is elliptic or
hyperbolic, depending on whether the meridional velocity is subsonic or
supersonic, respectively. When a relation between the tangential and
the axial velocity is given, however, the principal equation becomes
hyperbolic when the relative-velocity is supersonic. A general method
of solution for both the elliptic and the hyperbolic case is outlined.
Specific applications of the theory to several common types of com-
pressor and turbine employing free-vortex, symmetrical-velocity-diagram,
solid-rotation-type, nontwisted-blade, and radial-blade-element designs
are discussed.

INTRODUCTION

Aith the increasing use of velocity diagrams other than free-
vortex type, low inlet hub-tip-radius ratios, and high velocity of flow,
the problem of three-dimensional flow in axial-flow turbomachines
becomes more and more important. This problem is treated by Traupel,
Meyer, and Marble (references 1 to 3) for incompressible fluid.
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Compressible flow is treated in reference 4, in which methods for
limiting solutions of zero and infinite-blade aspect ratio are obtained
and a step-by-step method, as well as a simpler method based on an
approximate knowledge of the shape of streamlines, is given for finite-
blade aspect ratio. In reference 5, Reisner gives a method of blade
design for compressible flow with the shape of neither hub nor casing
wall specified in advance. The problem of supersonic flow in impellers
of a given casing and blade shape is currently being investigated by
Arthur W. Goldstein of the NACA Lewis laboratory.

The analysis made at the NACA Lewis laboratory and presented
herein proposes a unified theory that is applicable to both direct and
inverse problems for both subsonic and supersonic flows in compressors
and turbines of arbitrary hub- and casing-wall shapes.

Equations of motion and energy for unsteady three-dimensional flow
of a nonviscous compressible fluid are expressed in terms of some con-
venient quantities for analyzing flow in turbomachines. Entropy changes
due to heat transfer in a cooled turbine and due to shock wave in
supersonic flow can easily be accommodated. The condition under which
irrotational-flow analysis is correct is also discussed.

The general equations are then simplified for steady through-flow
in turbomachines having thin blades of high solidity. It is shown
that, in the direct problem, just enough equations exist to determine
all the variables; whereas in the inverse problem, after the inclusion
of the integrability condition for the blade surface, either one vari-
able or a relation between several variables can be specified by the

designer.

In the solution of the problem, the continuity equation and the
equation of motion in the radial direction are combined into a principal
equation through the use of the stream function. This equation
involves some terms that are either given or to be determined by other
equations defining the present problem. Two forms of the principal
equation are obtained for two main groups of designs in which the vari-
ation of tangential velocity and the variation of the ratio of tangen-
tial and axial velocities are prescribed by the designer. The crite-
rions of whether the principal equation is elliptic or hyperbolic are

obtained for both groups.

A general method of solving the set of equations for both the
direct and the inverse problems is then described for turbomachines of
arbitrary hub- and casing-wall shapes and for either an elliptic or

hyperbolic principal equation.
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The dimensionless forms of the principal and other equations for
some typical designs are given. A simple approximate correction for
blade thickness is also given.

SYMBOLS

The following symbols are used in this report:

velocity of sound

differentiation coefficients in equation (70) used to multi-

ply function value at point Xj to give mtl derivative

at x; using polynomial of nth degree

functions of r and =z

constant

specific heat of gas at constant pressure and volume,
respectively

differentiation with respect to time following motion of
fluid particle

mth derivative of g
blade force per unit mass of fluid
Green's function

2
total enthalpy per unit mass of fluid, h + %f

enthalpy per unit mass of fluid

we y2l
h+—§-—2——H—w(Vur)

thermal conductivity
characteristic curve

order of derivative
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n degree of polynomial
1Y pressure
Q heat added to fluid particle along path of motion per unit
mass per unit time
q dependent variable
R gas constant
m i remainder term of mth derivative at point xj obtained by
nR using polynomial of nth degree
r,0,z cylindrical coordinates relative to stator
r,P,z cylindrical coordinates relative to rotor
s entropy per unit mass
T temperature
t time
U velocity of blade at radius T
u internal energy per unit mass with O° absolute as base
temperature
V absolute fluid velocity
W relative fluid velocity
X independent variable
W
B = arc tan WE
8,58, grid spacing in r- and z-directions, respectively
T ratio of specific heats
T average value of T

2057
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n,¢ independent variables

A slope of characteristic curve, %E
o = tan B = ;3

v value of x Dbetween x, and x,
o] mass density

¥ stream function

w angular velocity of blade
Subscripts:

b trailing edge of guide vane

c leading edge of rotor

d trailing edge of rotor

e leading edge of stator

h hub

i inlet

J any station

m meridional

o} refers to position where blade element is radial or F,. =0
r,u,2 radial, circumferential, and axial components
T total state

t at tip or casing

Superscripts:

a,b, grid points

i,i,k,1 '

*

dimensionless values
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GENERAL BASIC EQUATIONS

The three-dimensional compressible flow of a nonviscous gas
through a turbomachine is governed by the following set of basic laws
of aerothermodynamics: From the principle of conservation of matter,

the equation of continuity is

2 4 gu(eW) = 0 (1)

or

- D{lo
W o+ _&__%2_21 =0 (la)

Dt

For a blade rotating at a constant angular speed 5, Newton's second
law of motion gives

DW 2—, ~—=_DV_ -1
o - O°T + 20X = o= - S0P (2)

The first law of thermodynamics may be written as
( -1
Du Dlp ) _
ot * P oo - @ (3)
where u is related to the gas temperature T by

Du DT
&% = °V Bt (4)

and Q is given by the following equation if only conduction is con-
sidered:

Q= p - (xyT) (5)

For the range of gas temperature and pressure encountered in ordinary
turbomachines, p, p, and T are accurately related by the following

equation of state

p = RpT : (6)
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Although the flow of gas through the turbomachine is completely
defined by the preceding equations together with the known variations
of cy and k with temperature and the given boundary and initial
conditions, in reference 4 it is found more convenient %o express the
state of the gas in terms of entropy, total enthalpy, or a quantity I
of the gas, in addition to its velocity components. These quantities
are defined as follows:

T ds = du + p d(p-l)' (7)
2
v
H=h+‘2 (8)
2 2
W U
I-h+—2—-—2-H-c0(Vur) (9)
where
h=u+ pp—l (10)

When equations (4), (6), (7), (10), and the relation,
R=cp - cy= (r-1)cg

which follows from equations (4), (6), and (10), are used, there are
obtained

T ds = dh - %E | (11)
Y D dp
T as = L d(a) - 2 (11a)
S 1
s 1
d(_R_) oy d(log, T) - d(loge o) (12a)

and the equation of continuity can be written as

_ D(log, T)
1 e D S
VW ST Tt -fe(g)=0 (13)
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From equations (9) and (11),
%Vp +—]2=V'w2 - %7 = VI - TVs

With this equation and the relation

WM, @) = St + 3V - O

the equation of motion (2) can be written as
M mormy L o
- WXEXW) + 20XW = -VI + TVs (14)
ot
An alternate form of equation (14) that involves the vorticity of the

absolute motion is obtained as follows: Using the cylindrical coor-
dinate system with the z-axis parallel to . yields

+ OXr | (15)

=]

<

XV = UXW + VX (oxr)

but
X (oxr) = (r-Vo - (@-9)T + o(V-T) - T(V-0) = 20

Hence,

TXV =UXW + 20 . (15a)

This relation can also be seen from the following expressions of rela-
tive and absolute vorticity expressed in terms of cylindrical coor-
dinates r,®z and r,0,2, which refer to the rotor and stator,

respectively:

_ oW OW.
COMEES
—— oW, oW, > 6)
e
(W W
UxW) g = % fggfz - % §¢?
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3V, v A
= 1 Z u
WV, =%56 ~ 5
ov, oV,
(Uxv), = ST TS \ (17)

and the relation

o(v o(wW
(a;lr) = (a‘lfr) + 20r (18)

When equation (15a) is used, the alternate form of equation (14) is

%fg - WX(UXV) = -VI + TVs (14a)

The use of equations (2), (9), and (11) yields

DI . Ds  103p  Ll,= =DW = DU

=T oot T o VR WGy - Uy

_Ds 13 .= 2= =~ = DU
—TDt+pH+W(a)r—2wxW)-U-ﬁ€

_aDs 1 0dp

=T & * 55t (19)

Hence, energy equation (3) can be written as

_mDs _DI 109p .
Q—T—D'E—-ﬁ--p-&' (20)

The preceding equations lead to several important general considerations.

If the blade rows are not placed too close together, the pressure
of gas at a fixed point relative to the blade can be taken as constant
with respect to time. Conseguently, according to equation (20), the
entropy and the quantity I of the gas stay constant along its rela-
tive streamlines for adiabatic flow. The constancy of I means that
the rate of change of total enthalpy along the streamline is equal to
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L

the angular speed of the Dblade multiplied by the rate of change of
angular momentum about the machine axis of the gas particle along its
streamline, which is the well-known Euler turbine equation usually
derived under less general conditions. In a cooled turbine where the
heat transfer may be large, the rate of change of s and I along
the streamline can be obtained by using equation (20). Again, for
steady relative flow, equation (14a) shows that the vanishing of abso-
lute vorticity requires both gradient I and gradient s to vanish
or the difference between VI and TVs to vanish. When both gradient
I and gradient s are zero upstream of the blade row and the flow
is adiabatic, s is uniform in passing through the blade row; p is
then a function only of p (according to equation (12)), and conse-
quently, according to Kelvin's circulation theorem, the absolute vor-
ticity will remain zero in passing through the blade row and .the flow
can then be treated on the basis of irrotational absolute flow.

2057

For flow through a stationary blade row, equation (l4a) becomes
W muronT
- VX(YXV) = -VH + TVs (14Db)

which agrees with similar relations previously obtained by Vazsonyi
(reference 6), and Hicks, Guenther, and Wasserman (reference 7). It
is interesting to see that, for relative flow in a rotating blade row,

TX(VXV) becomes Wx(VXV) and H becomes I.

When it is assumed that the fluid enters the machine with uniform .
E and s and zero vorticity, the adiabatic flow through the inlet
guide vanes can be treated on the basis of irrotational flow. When
the guide vanes impart a radial variation of the tangential velocity
of the fluid downstream of the vanes similar to that in a potential
vortex, the circulation is constant along the blade span and the fluid
maintains a uniform H and s and a zero vorticity going into the
following rotor blade row. If the rotor blade row is situated far
away from the inlet guide vanes, the fluid enters the rotor with a
uniform I in the circumferential direction as well as in the radial
direction, and the flow through the rotor blades can again be treated
on the basis of zero absolute vorticity. If the rotor is close to the
guide vanes, the fluid entering the rotor blades is circumferentially
nonuniform, which condition is balanced by the unsteady term of the rel-
ative velocity, and the flow through the rotor blades should theoreti-
cally be treated on the basis of unsteady flow with zero absolute
vorticity. When the guide vanes impart a radial variation of tangen-
tial velocity of the fluid downstream of the vanes different from that
in a free vortex, however, the cireulation varies along the span of
the guide vanes, thereby shedding vortices from the trailing edge to
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. the fluids downstream, and the fluid enters the followiﬁg rotor blades
with a uniform s and H, a nonuniform I, and a nonzero value of
absolute vorticity. Consequently, the flow through the rotor blade
row cannot be treated on the basis of zero absolute vorticity.

From the preceding discussion, the choice of H or I and s as
the basic thermodynamic variables of the gas is apparent. Compressor
and turbine rotors are usually designed to add or subtract the same
amount of energy radially to or from the gas; hence, H is usually
radially constant throughout the machine. When the circumferential
velocity of gas upstream of the blade row is zero or varies inversely
with radius, I 1is then radially constant throughout the machine when
the heat transfer is zero or is uniform radially. These facts will be
utilized in the following developments.

The continuity equation (13) can also be put into a form contain-
ing H or I by use of a constant value of v, that is, Y for the
range of temperatures involved in the process. By using 7y, equation

(12a) can be written as

-8
d(loge p) = d[;oge (T?_l e R)J (21)

. Integrating from the inlet total state yields
L L
* ) ( r \7L A w7l sk
pl = = |7 e = h e
Pp i T,i
L 1
T-1 T-1
2 2 - 2.2
v W w'r
H - = * I-—=+ *
_ 2 R 2 2 e 08 (22)
Hy By

where As¥ = s*-s*T,i. The continuity equation then takes the following
form:

1

1
¥-1 * 7-1 *

* _ _ —

%h e L gl T e F =0 (23)
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The solution of the three-dimensional-flow problem thus consists
of the simultaneous solution of equations (1) or (23), (14), and (20).

GENERAL THROUGH-FLOW THEORY

Because of the enormous mathematical difficulty in solving the
preceding set of general equations, the essential feature of the three-
dimensional flow in turbomachines will be investigated with the follow-
ing two simplifying conditions: (1) The blade rows will be assumed to
be placed so far apart that the relative flow through any blade row is
steady. Under this condition, the equations of continuity, motion,
and energy in the scalar forms are:

Continuity equation, from equation (1),

d(pW,r) d(oW,)  o(pW,)
1 r 1 u Z
T T o o ° (2¢)
or, from equation (23),
EE B R
ST L2y 1) L @ T et ) a T e W)
L Lo vy 2. -0 (24a)
T or T o oz ‘
The three equations of motion, from equations (14),
W, [d(v,r) oW (aw oW ) 3T d
u u T r z s
'?[T“W}+WZH‘B?'=‘B?+T6}' (25)
Wp |3(Vyr) oWy ; (l oW, awu> 131, T - (26)
7S5 "So| " "z2\z3dp "2 /T Trdp rip '
oW, BWZ> (l oW, awu> oI Js
'Wr(y'&«—”’u ' %/ TR Tw (27)
and the energy equation, from equation (20),
ds Wy 3s ds dr Wy a1 oI
Q=T(Wrg;+—z-.—5c—p+wzé—z->=wrgf+?g€)+wzsz (28)

e ——
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(2) The blade is so thin and the number of blades is so large or
the pitch is so small compared with the blade chord that the terms con-
taining the circumferential variation of the velocity components in
equations (24) to (28) are much smaller than other terms in the same
equations and can therefore be neglected. The circumferential vari-
ation of pressure or enthalpy is, however, preserved in equation (26)
by the introduction of a blade force f, which may be considered as
either due to the pressure exerted by the blade surface on the cir-
cumferentially thin gas stream or as a circumferentially averaged blade
force on the gas stream between two blades. This simplification is
first introduced by Lorenz (reference 8) in order to follow the flow
along a given surface. The physical concept involved is clarified by
Stodola (reference 9). Ruden (reference 10) further proves, for incom-
pressible flow, that the solution so obtained will give an average
value in the circumferential direction for a finite number of blades,
provided that the departure from the average value is small. For turbo-
machines having relatively thin blades of moderately high solidity,
this solution can indeed be taken as that for a relative stream sur-
face, which is about midway (based on mass flow) between two blades.
Because the circumferential variation of pressure and density is con-
sidered in equation (26), it is better to refer.to the present theory
as a "through-flow" theory (following Ruden), or "large-number-of-thin-
blades” theory, instead of "axially symmetric" or "infinite-number-of-
blades" theory. (Differentiating velocity components obtained in this
theory and combining them according to equation (16) does not give the

true vorticity.)

With this second condition, equations (24) to (28) become

o(pW,r)  d(pWy)
1 r z/
r  or s 0O (29)

or

1

d | %71 -ast d | . *T7-1_-As*
ST \B T e T Wer) + - \B e W, /=0 (29a)

W, awz> 5T Wy o(Vyr) 3s
z S3r

R

=

5z ° =t tT o Iyt

dn  Vy o(Vyr) Os

=—§;+—;—&———+T§;+Fr (30)
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D(Vur) B(Vur) d(V,r)
Bt = V¥r T3 TV TR (31)
oW, awz> ST Wy o(vyr) 3s
'Wr(sz—'sz-— =-%tT o2 tTT:
N (V. r) 5 .
= - Z+;‘£—-§£——+T£+FZ | (32)
and
D d d '
a-rlonfi 2w, %) ()
or
DI dI dI '
Q=’]ﬁ—:=wré?+WZgz' (533')

The circumferential enthalpy or pressure gradient in equation (31)
is replaced by the term Fy. The corresponding effects in the other two

directions are represented by Fp and Fz in equations (30) and (32),
respectively. The vector F 1is perpendicular to W or related to the
shape of the blade or flow surface by the following equations:

FyWp + FyWy + FaWg = 0 (34)

or

Fp dr + Fyr dp + Fz dz = 0 (342a)

Only six independent equations exist in the preceding equations: one
continuity relation, three equations of motion, one energy equation, and
one orthogonality relation between F and W. For example, equation
(35a) can be derived from the equations of motion, equation of energy

(33), and equation (34). (See reference 4.)

DIRECT AND INVERSE PROBLEMS

In a direct problem, the blade surface or flow surface is considered
to be given by the equation

s(r,8,z) =C (35)

2057
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and two relations among the force components are obtained by relating
them to the partial derivatives of the function S:

r _ or
F. " IS (36a)
r 00
Z _ 0OZ
F, = Ia8 (36b)
r 36

Equations (29) to (34) and (36) therefore provide eight independent rela-
tions that completely define the direct problem involving the eight pri-
mary variables Wy, Wy, Wy, F., Fy, F,, s, and I or H. (The
heat transfer Q Dbetween the gas and the blade is only important in

the case of cooled turbine blades and is considered to be given by cool-
ing considerations.)

In the inverse problem, the blade surface is to be determined,
which means that the two relations among the force components as given
by equations (36) are not available. This unavailability does not mean,
however, that the designer has freedom to prescribe the variation of
two variables or two conditions among the, variables throughout the blade
region because, in order that the differential equation (34&) will lead
to an integral blade or flow surface of the form of equation (35), the
following necessary (and sufficient) condition of integrability must
be satisfied (reference 11):

FOXF = 0 (37)

which, for the present case, reduces to

S [F y [F
5 (7) - 5 () (s7)

This condition of integrability was first"pointed out by Bauersfeld as
early as 1905 (reference 12), but is neglected in many recent investi-
gations. In effect, it gives a restriction to the velocity variation
that a designer can specify through the force terms in the motion
equations (30) to (32).

Whereas in the direct problems two conditions are obtainable from
the given surface, in the inverse problem one condition on the surface
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must be satisfied. Hence, the designer can specify, in the inverse
problem, only one relation throughout the blade region, which can be a
variation of one thermodynamic quantity of gas (Vu, Vz, p, or h), one
relation on the blade surface (untwisted or radial blade element), or
one relation among the gas properties (constant Mach number), and so
forth. The variation prescribed should, of course, be reasonable so

that the sclution exists.

After this one relation is prescribed by the designer, the solu-
tion of the inverse problem is quite gsimilar to the direct problem.
Among all the equations to be satisfied, equations (29) to (34) are
common to both problems. In addition to these six equations, equa-
tions (36) are available in the direct problem and equation (57&) and
the one relation prescribed by the designer to be satisfied are avail-
able in inverse problem. If, in the design, a condition on the blade
surface is specified such as the plade design in which all blade ele-
ments are radial, F, 1is prescribed as zero by the designer, and the
integrability condition equation (37a) leads to a simple relation be-
tween F, and F,. These same two relations are also directly given

by equations (36a) and (36b), respectively, in the direct problem, and
consequently the solution for the two problems is exactly the same.
In other cases, however, the solution of the two problems is a little

different.

PRINCIPAL EQUATION FOR TWO MATN GROUPS OF DESIGN

In this and the following sections, a general method of solution
for both the direct and the inverse problems will be described. From
the preceding equations the through-flow considered herein is essen-
tially described by the equation of continuity (29) and the equation
of motion either in the radial direction (equation (30)), or in the
axial direction (equation (32)). Except in the case of low-speed
centrifugal impellers, it is always advantageous to use equation (30),
because Fy 1is either zero in high-speed centrifugal or mixed-flow
impellers or relatively small in axial-flow bladings. Also, either
dH/dr or OIfdr 1is usually equal to zero, and O(Vyr)/or is often
given. This choice is used hereinafter. If it is desirable to use
equation (32), equations can be developed in a similar manner.

The combination of equations (29) and (30) is carried out by the
use of a stream function, which is defined as follows and satisfies the

continuity equation (29):

2057
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1
.1 NAc¥
g% = rp*wz = rh* le As WZ (388.)
=,
oY _ -rp*W, = _rn¥V1 0s Wy (38b)

From equation (37),

Q/

01
S04

1
*T-1_-0s* My 38y 1 1 3, as*
rh™’ e & Tet\r EZx Ty
\ (39)

1
Fooaet Mr %y (1 am a*) oy
© 3z 3,2 \ a2 oz '3z /o2

o/

-rh*

Q/

The succeeding development is a little different for the two main
groups of designs to be considered. In the first group, the variation
of the angular momentum of the gas about the axis of rotation is Pre-
scribéd by the designer; that is,

Vyr = fi(r,z) (40)

is given. Among this group are the free-vortex type in which f] 1is
Just a function of 2z, the more general solid-body-rotation type, the
symmetrical-velocity-diagram type, and others. In the second group of
designs, the following relation between tangential and axial velocity

is prescribed by the designer:

gﬂ

L= tan B = W - fo(r,z) (41)

Among this group are the common blade design for high-speed centrifugal-
and mixed-flow impellers in which all blade elements are radial with

W =1 fz(z), the less general design with u = tan B = f4(2z), which
gives a practically untwisted blade and is most suitable for cooled tur-
bine rotor, and others. The principal equation will now be obtained in
a form most convenient for these two main groups of designs.
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Group of Designs in which Equation (40) is Specified

From equations (9) and (38),

2 2 2 2
W 2.2 = *
=T - ; +_a)g' ) % L-op¥T-1 208 {(ai> 4 (ag> :} (42)

Differentiating with respect to r and z yields

dn __a? |a1 oMy 2 ‘2< 1 Bs*> A
&—m[&'wu&‘”’r'wm EARTEA
A . >
-Lx Y-1A4s %y _ %y
rlh e (WZS;E Wrﬁ)i‘ &
(43)
an _ a2 |31 _ gy a2k
3z ey 2|0z U3z T ™ 3z
2, 2
S *T-1 As* %y . 9%Y
r~—h eAs <Wzm Wraz2>j‘
Substituting equation (43) into equation (39) and adding yield
S /oW, oW, 3%y 3%y
(aZ—sz)rh* -le—AS (5?% - gz—'> = (a -W 2) —-— - ZWr A S_T +
32 2 ) oW d
(az_WZZ)-B—z—g+<—%—— §+Wu5;_2—a)2r+a 5—— 5}15
L,y M, 2 8% )Ry
(8Z+Wuaz Te Bz)az-
= 0 (44)

Substituting equation (44) into equation (30) and dividing by 82 yield
the following principal equation:

2057
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)R 2, L)L e o )
§ shere
Ll=-%+aiz-[-gf; Wug—l-wzr+a25§t+
ii’f (-%1 !

With the variation of V, or W, prescribed by the designer, the
meridional velocity components are determined by the principal equa-
tlon (45). The other equations are used to determine various terms
involved in the coefficients I and Nj. From the coefficients of
the second derivatives, the principal equation (45) is hyperbolic when

the meridional velocity Wy =4/Wr2 + sz is greater than the speed of

sound, and elliptic when the meridional velocity is less than the speed
of sound. For the hyperbolic case, the method of characteristics can
be used and will be discussed later. For the elliptic case, it is con-
venient to put the principal equation in a slightly different form, as
follows: From equation (38),

W, 2 d(1loge 0*) W 2y O *
x« Wz %y 13y ge P¥) 3y 4 OMr 32y  O(loge p*) dy
™S dr r or or 3r - TP 3z ¢ dz2 oz oz
(46)
Substituting equation (46) into equation (30) results in
éEI 1 a¢ azw dy d(log, o*) 3 d(log, p*)
2 " ror 2 | o * 8% Sz *
or oz
(rp*¥)2 |Wu 3(Vur) 31 .
St |T o Tt ISt =0 (47)

or
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In this form, all terms except the first three are taken as constant
during the successive improvement of ¢ values throughout the whole
region in the numerical solution so that the coefficients in the differ-
ence equations of V¥'s will not vary during successive cycles.

Equation (45) or (47) is then the principal equation for this group
of designs to be used for a meridional velocity greater or less than
the velocity of sound, respectively. The process involved in solving
this principal equation, together with other equatidns in the inverse
and direct problems, is as follows:

In the inverse problem, V, or W, is given by equation (40).
Equation (31) is first used to compute Fy. The energy equation (33)
is then used to determine the variation of s along the streamline.
The variation of I along the streamline is obtained from equa-
tion (33a). Equation (32) is used to compute F, and F, 1is then

obtained by integrating equation (36a) along a constant r line:

Z
. d (Fz
Fp = Fyr = \Fr at (48)
Zo
where F. =0 at 2z = z.. The solution is then carried downstream by

equation (45) in the hyperbolic case, whereas successive sets of
improved values of V¥ are obtained throughout the region in the ellip-
tic case. The quantities Wy and W, are then computed from equa-

tion (38).

Tn the direct problem, equations (36a) and (36b) are given. It is
most convenient to obtain W, from equation (34) as follows:

F F
o = - (35 e + 52 ) (49)

The quantity F, is then computed from equation (31) and F, and Fy
are obtained from equations (36). Equation (33) is used to determine
the variation of s along the streamline and equation (32) to deter-
mine the variation of I or H. Equation (30) is then used to solve

for ¢ as before.
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Group of Designs in which Equation (41) is Specified

For this group of designs, it is necessary to combine W; into

N W, according to equation (41) as follows: Substituting equation (41)
9 into equation (30) yields
oW OW.
2 zZ T < 5u> 1 ( oI Os )
14p2) —2 - =L &+ W, + 2op + —(-2L 408 4y 0 (50
(1+%) or oz “\r T30/ " W, \ or or (50)
Instead of equation (42),
2
2,2 - =7 o ¥ 2 2
Ca wér® 1 _px 7v-1 2As 2 <Bw> (BW)
h=1I+=— zrh e lglw)yr +\52 (51)
Differentiating with respect to r and 2z, combining with equa-
tion (39), and substituting into equation (50) give the following form
of the principal equation:
(1+ 2)(1 )52“’ 2(14p2) Tz 2y +(1 L )32‘1’
WL - 5= - W) - 5% - —_—
al /dre a2 Or 0z al dz2
. oy oV
Ly st + Np 52 =0 (52)
- where
B 2 1,098 1 (o1 2. w2 Bu)J
_(l'HJ.)[ r+g;— az §+(Dr WZ ugl-: +
2 12 2_y2 '
ac-w Lo, op ac-W (_ oI ds )
=z u(r + 5;> + B 2 S5 T 5 Fpo + 200,

- Fo - G-
253 "Zx 3 *%

Equation (52) becomes hyperbolic when the relative velocity is super-
sonic, and elliptic when the relative velocity is subsonic. For sub-
sonic velocity, a more convenient form of this equation for computatlon
is obtained by substituting equation (46) into (49):
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2,04y (1 du\ov | %% 1 [ 2,00 dp . OV Bp]
(1+ )gr‘z"(;‘“a?b*g;'a (5 o8 * 52 32) *
2 %2 ;
2pa>rp*+—~a——r p\y <—-§—§+T%§+Fr>=0 (53)
3r

The process involved in solving the principal equation simultane-
ously with other equations in the direct and inverse problems 1s essen-
tially the same as that given for the previous group of designs. The '
only difference is that W, is now computed from equation (41) and, in
the elliptic case, is to be reevaluated after succesgive improvements
of V. In the design where radial blade elements are employed, the com-
putation is considerably shortened with F, equal to zero, which shows
the advantage of using the cylindrical coordinate system for this prob-
lem. (In the customary method employing a coordinate system along the
streamline and normal to it, the blade force along the normal is not
zero.) In this design, the process for the direct and the inverse

problem is exactly the same.

The use of W = f3(z) in the design will lead to a blade close to
the untwisted type if the hub-tip-radius ratio is not too small. In
the direct problem with such a blade given, this relation may be used
or the flow may be more accurately obtained by using the equations

given for the first group.

The different character of the principal equation for the two
groups of designs considered is interesting. The character of the prin-
cipal equation depends on the variation prescribed in the design or
considered as given in the direct problem. This fact may be utilized
to solve some flow problems in which the flow in some region is slight-
ly supersonic. When a tangential-velocity variation is given, the
equation for the whole region may be elliptic.

GENERAIL METHOD OF SOLVING PRINCIPAL EQUATION

Elliptic Case

For convenience of discussion, the fundamental equation (47) or -
(53) of the two groups of designs can be written in the following gen-

eral fcrm:
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|, % Ky, %y 1(;dp , N ap) x| _ L2
§%§?'§5;+§?-5@5;&+525 + L pN|-repM=0 (54)

The equation is nonlinear even for incompressible flow. The equa-
tion may be more conveniently rewritten in a linear form as

%y KOy , o5y _
Jg;é—;&:'i'ggi—m' (55)
where
_ 1/ d¥ dp , OV dp ) _ % rzp"‘2
N = 5<J S5t S, 82) Lp + __gﬁf'M (56)
r

and is evaluated from an approximate solution at the start of the cal-
culation and from the ¥ and p values obtained in the previous cycle
during the calculation. For simple boundary shapes and simple func-
tions of J and K, it may be possible to find a Green's function
G(y,z,n,g) with its proper properties so that the solution of the prob-
lem can be written in the following form:

Wroz) = [ folr,2,m,0) N(n,t) an at (57)

For example, for flow with the design in which the tangential velocity
is prescribed, the principal equation takes the form

%y 1y . %y |
ore T Tor o N =

If the boundary walls are cylindrical surfaces, the total-enthalpy and
entropy are uniform, and the tangential and the radial velocity both
vanish at the inlet and the exit, the radial variation of ¥ at the
inlet and the exit are the same and can be subtracted from V¥, which

results in

2(Y-v¥3) 1 d(y-vy)  2(v-vy)
ror tTaz v (59)

dr
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which can be written as

32 (q;—xlri> L2 (\v-vi) . 32 (ﬂf-h) . g (60)

32\ T dr\ 2 g2 \ T

is zero on the boundary and the corresponding

The quantity (

Green's function is available from a similar equation in reference 3.
When the Creen's function of reference 3 is used, the solution for V¥

is
y=Vy; JO%(T)Z:H:E) % (n,¢) dn ag (61)

If G 1is tabulated at several values of r, V¥-¥; can be conveniently
obtained by a numerical double integration process on a punch-card
machine. TFor curved boundary walls in the meridional plane, 1t is
necessary, in this method, to use the technique of conformal trans-
formation to render the given boundary shape into a rectangular one.
Tnasmuch as this process involves a numerical solution of the Laplace
equation with the given boundary shape, it is found better to solve
directly the given equation (55) with the given shape by the numerical
method. Furthermore, this solution will be the only choice in the
general case where J and K are not equal to 1 or the boundary con-
dition is more general, which makes the task of obtaining the proper
Green's function a very difficult one, if not impossible.

In order to solve directly the given equation (55), a general
numerical differentiation formula for first and second derivatives with
function value given at unequally spaced grid points using second- and
higher-order polynomial representation is required to give conveniently
and accurately the finite-difference expressions at the grid point near
‘the curved boundary, which is done as follows: When the value of any
quantity q is known corresponding to a number of unequally spaced
values of the independent variable x, denoted by Xns X5 e o+ oo Xn s
the variation of q with respect to x is most conveniently expressed
by a Lagrangian polynomial of the nth degree:

IIn+l(X) qj 0

Q(X) = 7 + °R
J:ZO X—Xj Hn+l(Xj) n

(62)
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where
T (%) = (x-x0) (x-x7) . . . (x-x) (63)
IIl',l_,_l(xj) = (xj—xo)(xj-xl) . (x - %3 (x xJ+l) .. (xj-xn) (64)
and
0p _ TTn+1(x) q(f“‘l)(v) (65)

n T T (nt+l)!

where Vv lies between xp and xp. The successive derivatives of g
with respect to x at any point x can be expressed as (reference 13)

n .
1 qd TIn+1(x)
Dmq = 66
4 Jgo: IIl,'l+l(x X-X3 Z XXk (66)
ka
n J I (x) n n
qu = 2! Z: H‘ ql(x-j zfi- X—lX X=X + ER (67)
520 | Hn+liX] J k=0 k I=x+1 77
k#j 143
and so forth, with
1p _ Inea(x)  (na) TInt1(x) (ne2),,\ 4
nR~_(n_+]__-)[_-q (D)+m—)!—q_ (U)dx+... (68)
2. Thae1(x)  (ne1) TTht1 (%) (n+2),., av . |
nR = W q (U) + 2 YR (v) a + .. . (69)

The summation operation is very easily performed when x is a grid
point, because most of the products vanish. At these points, it is

convenient to write
Domi j i
(DmQ)x=xi = E o EBJ q + ﬁR (70)
. J:

The differentiation coefficients B and the coefficients of the deriv-
ative in the first or second remainder term have been explicitly

expressed in reference 13 in terms of the spacings between the succes-
sive grid points for general nonuniform spacing throughout and for the
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special case near a tapered-or curved boundary where only the first
or last spacing is different from the others, using polynomials of
second, third, and fourth order. For the special case, these coef-
ficients have also been computed for difference ratios from 0.1 to
1.29 in intervals of 0.01 of the distance between the boundary and
the nearest point and the other spacings and are given in refer-
ence 13. For spacing lying between tabulated intervals, the inter-
polation coefficients given in reference 14 can be used to obtain

the required values of B.

In the present fluid-flow problems, it is necessary to cover a
large region in order 1o reach the boundary condition that is always
given at stations far upstream and downstream of the blade row. In
order to reduce the labor of computation, it is desirable to determine
if the number of grid points required for a given accuracy can be
reduced by using an order of polynomial higher than the customary
second order. A study of the remainder terms (reference 13) and actual
experience in the present problems show that, in most cases, the use
of fourth-order polynomial will reduce the necessary number of grid
points to less than one-quarter of that required by the gsecond-order
polynomial. In setting up the grid pattern, it is always desirable
to map the flow region in such a manner that the distance between the
boundary and a point next to it is not too small compared with the
other distances, because the differentiation coefficient becomes Very
sensitive to the small ratio. If the small ratio cannot be avoided,
it is best not to include these points in the calculation.

When the grid pattern and the order of polynomial representation
have been selected, the coefficients B at each point can be obtained
from the table given in reference 13. Then the differential equa-
tion (55) at any grid point whose ¥ value is Vi (fig. 1) is replaced
by the following algebraic equation:

n . . i . n .

iz, K iy, 2,1 .k i_
2y Oy Y g P =
J: =

where wj and Wk denote the values of V¥ along constant =z and
constant r lines, respectively.

The values of V¥ along the hub and the casing walls can be arbi-
trarily chosen, with the difference proportional to the mass flow
between them. At the first station on the left 1-1 and at the last
station 2-2 on the right (fig. 2), however, the ¥ values are unknown.
The boundary condition at stations 1-1 and 2-2 is, usually, that the

- .

) a2
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flow is parallel to the bounding walls. When the hub and casing walls
are horizontal at the inlet and exit of the machine and the stations
chosen are far enough out, the value P required at a point o
distance away from the V2 point is also equal to V2. Whether or not
the inlet and the exit stations are chosen far enough out will be
indicated by the variation of V¥'s along these stations obtained in
the solution.

After equation (71) is obtained at every interior grid point, a
number of methods can be used to solve the set of simultaneous alge-
braic equations. For hand computation, the relaxation method developed
by Southwell has proved to be superior to others for this type of
equation (references 12 and 15 to 18). If the fourth-order polynomial
representation is decided, the calculation can be carried out in two
steps by using only the five main coefficlents in early stages and
then the residuals are recomputed and relaxed by all nine coefficients

(reference 13).

If a high-speed, large-scale, digital computing machine is avail-
able, the set of equations can be solved either by an indirect or
direct method. In the indirect method, the straight iterative method of
Liebmann is used, wherein V1 is solved at .each point from its sur-
rounding values according to equation (71) and the process 1is repeated
until the change at any point is no longer significant. This method
is simplest to set up, but is slowest. A better method is to set the
machine to perform a simple relaxation process by computing the resid-
ual at each point and relaxing according to a fixed relation with
respect to the amount of residual Jjust found.

A much quicker machine method, especially when a number of solu-
tions with, for example, different inlet Mach numbers are to be found
with a given geometrical shape of the problem, is the direct method
that solves the set of simultaneous equations by a matrix process.

The details of a matrix method, which fully utilizes the great number
of zero-elements of the original coefficient matrix, is given in refer-

ence 13.

Hyperbolic Case

In the hyperbolic case, the problem comsists in solving V from
the following principal equation, written in a general form for the
two groups of designs:
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%y By % A, g N
Jg‘z'z'”Ks';a—r*Lg;i*Ms;*stO (72)

with the initial condition that V¥ and its normal derivative are given
on a curve that is not a characteristic line.

From equation (72), the equation of the characteristic line is

J (%%)2 - 2K (f—é) +L=0 , (73)

The slopes of the characteristic lines in the r,z-plane are

A S NG

>‘l_<dz>l—J 3 N K-IL (74a)
- (&) KL k2

>\2_<dz>2_J+J K®-JL (74v)

When the pbint on the f,z-plane moves along the characteristic
curve 1, corresponding to a small change dz in 1z, the change in
r is dr = %l dz. Because of these two small changes, the change of

any quantity 4 1is

dq=%%dz=§r(zldz+g—%7\ldz (75)
or
dg oq oq
dz oz + %l Sr (78)
Hence, along 11,
a (dv\ _ 3 (v 3 fov) _ 2% d%y
a'z(sz>“5'z'<5z>”l$(sz)‘az N 5o (77)

E@)-20)n2@-Tenl

1OoNT
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. From equatio .) and (78),
% %2%’;=a%(%“é)-h§i—%’ (79)
BN LR T @

Substituting equations (79) and (80) into equation (72) yields

a (3 a (3 2 32 dy .
J 3 (gg) + (2K-JIN{) 3z (5'1_') + (I —2K>\1+L)SI% +MS+ Nsh=0 (81)

By virtue of equations (74a) and (74b), equation (81) becomes

d (¥ 4 (o) , Moy Noy _
S G e g (555t 35=0 (62)
Similarly, along the second characteristic line 1,
4 (o 4 (oy) , Moy Ny _
. dz(&)+>‘ldz(§?>+J§z’+J5?‘o (83)

Starting from two points a and b a short distance apart on the curve
where the initial condition is given, equations (74a) and (74b) give
the tangent to the characteristic curves at these two points and equa-
tions (82) and (83) give the new value of OY/dz and OY/or at the
point of intersection c¢ of the two tangent lines. The auxiliary
equations corresponding to the particular problem are then used to
determine other pertinent quantities at the point c. This process is
to be carried step by step downstream. The method is the same as for
ordinary two-dimensional rotational flow. (For details of calculation,
see reference 19.)

APPLICATION TO TYPICAL DESIGNS

The following sections include a brief discussion of the manner
in which the fundamental and auxiliary equations reduce to particular
forms for several typical designs. In actual computations, it is
always desirable to render all quantities dimensionless. A convenient

- system is to divide r or z, W or V, p, T, s, H, or I,
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2 T 2 2 2
F, ¥, and ® by ry, U Ppgr Ut Ry, R, U, U /re, w0,
and Ut/ft, respectively. These dimensionless values are used in
the following equations.

Free-Vortex Design

In the free-vortex design, the variation of V,r 1is prescribed as

a function of 2z only. With a free-vortex flow; the total enthalpy at
any point 2z 1s simply related to the inlet value by

-t .
* J Q *
H?—Hi = JQ = dt + & thr*)j—(V;r*)g (84)

2
i Ut

where (Vﬁr*)i is a constant. If Hi is uniform with respect to r

and 0Q/dr 1is zero, OH/dr will be zero everywhere; but OH/dz is not
equal to zero in the rotor, whereas BI/BZ is zero and it is there-
fore convenient to use the system of equations involving I. The
principal equation is then

2% Lot B | 1wt adt  u* 3t PHEAE [y 38¥)
Sp*2 ¥ or* T3FE T oF <8r* F Bz*’BZ*) ¥ ¥ Fr 7 ar¥) °
The auxiliary equations are
* o(v*
F*r* _ L oy ( u (86)
u r*p* Sr* ar¥
WL AEN a1
Fza = - r* dz¥* T T 3z% r*Ep*2 dz¥
* * N, F * *
D2y __l_éif N 32y* __}_<5W Jop + Y dp ) (87)
352 rXar*  az*%  of or* ar*  dz* dz*
2* 7 X
* gk o (= -
Fp = Fir f* S¥ (Fﬁr) at (88)
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2
- <a¢* >2 . <aw*>2 [
p*z » _I_af + g(l)*l‘*) Wu Br* Bz* e—ZAS-*. (89)
- * * T o %
B 2H} 2H 2r*2p*2Hi*

The computation can be started with an assumed value of V¥ con-
forming to the boundary shapes. In the early stage, it is advantageous
to omit equations (87) and (88) and to use the following approximate
formula of Fyp, which is obtained by solving the two equations by
assuming Bw/Br constant and neglecting small terms:

7%

3(v*r¥)
¥ 2 u Xk
Fr = 33 54 43 var® g (90)

Density can be obtained from the V derivatives as follows: PFirst,
2

¥-1
equation (89) is written as o = El - w/d] , where

_ e
T-1
%2
*72 ZAS* I* a?zr*z Wu
c p" “e H*'+ p— - oL
i i 1
i e
-1

*2
w8 kBl aadf L wak -1 T* | o*Bx2 Wy
= Ka?‘*) +(55) | < @D ZH¥  Zuk

Second, either ¢ is computed for a number of values of ¢ and a curve.
is plotted, or o is obtained for a number of values of ¢ through
iteration of the preceding equation and a table obtained for equal
intervals in ®. In either case, after the V derivatives are obtain-
ed, @ is computed and o or p 1is then obtained from either the
curve or the table.

Design Based on Symmetrical Velocity Diagram at All Radii

Generalized for compressible flow, the symmetrical velocity dia-
gram at all radii is defined as follows (reference 4): (See fig. 2 for
station notation.)
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(V¥ )y, .\ a(Vir¥) e ok
¥~ 2Ty

ar ary (1)

If it is desirable to maintain a constant total state along the radius,
the variation of V,r with =z is such that the same amount of work is

done along all streamlines:

* % * ¥ *
(Vr' )y = (Vgr )y = £(z3) (92)
Hence,
3 *_ %
B'(Vur )j i (Vi )y } (s3)
ot orF '
Combining equations (91) and (93) yields
org
Hence,
‘ *2 * % * ¥
T (Vor Yo 4-(Vor)
(V:I'* )_b = _‘%_ _ w E,tz u b,t (95)
*2 * % * ¥
sx T (W )e,u(Vyr Dy 4 |
(Vur e = 7 (96)
2 2
(V) = (V) + (V) (Vor™) | (97)
oy T Wt b oF 13, - YT b,
In this design, the quantity BI/Br is not zero in the rotor,
but with constant work input, BH/Br is zero. Using the system of
equations involving H is therefore convenient:
* Kk
Py Lk, OB L(éﬁ'éef+i§9_) .
3r*2 £ or dz¥2 ¥ 3a* orF  dZF o
* * ¥
P IV Ar) | x| (98)
ny r*  dr* r R
or
* * * 3y
u ¥ p¥ dz* or* or* oz

&
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*
oV
MR e L SFAED 1wt
R Y o @ éyf o¥ I#ZP*Z d*
or
dy* 1 vt %* 1 (a\y* d*  oy* ap*)
= ¥ - = + 100
[Br*z r* dr dz¥2 p* or* ar*  dz* o (200)
z *
£ % % > [ ¥y
e, o () o o)
ZO u
: 2
2 2|7-1
* *\2 (S;_IEG_) + (_8_1]!_ ’
*2 §¥ _ (Vyr™) _\or¥ dz¥ e‘ZAS* (102)
Hj 21«*215; 213'&2;3"%21{’1'E

With only the additional complication that the value of V,; in each
cycle is determined from a knowledge of the streamline in the previous
cycle, the solution of this problem 1s cobtained in the same manner as
in the previous case. For a multistage compressor, it is important to
account for the effect of loss on density rise by including the A
factor in equation (102). The increase of entropy can be estimated by
a knowledge of the polytropic efficiency (reference 4).

A nonvortex-type velocity diagram quite similar to the pre-
ceding one is the solid-body rotation design that has a tangential
velocity varying linearly with radius in front of the rotor; that is,

(V) = orf? (103)
* *

OV Dy _ poy (104)
o

If total enthalpy is to be constant along the radius through the rotor,
equations (92) and (93) also apply. Hence,

* % * % * %
(Var )y = Crpl + [(Vur )5,6 - (Vur )b,t:l (105)
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and *
* % *2 * ¥ , *_*
(Vor')e = Crp  + [(Vur )e),G - (Vr /)b’t] (108) .
Lo
Comparison of these equations with those in. the previous design is 8
interesting. In the previous design the change of whirl through the
rotor is distributed evenly in the whirl in front of and behind the
rotor, whereas in the present design it is completely put into the
whirl behind the rotor. Except for this difference, the calculation is
quite similar to that given in the previous design.
Designs Involving Untwisted Rotor Blades
Untwisted rotor blades are desirable because of simplicity in manu-
facturing, and seem to be the most practical design for cooled-turbine
rotor blades. They can be efficiently used if the stator blades are
designed to fit them. If the blade is not too long, it can be designed
on the basis that u = Wu/wz is a function of z only. The principal
equation then takes the following form:
2 0%p% 1 of* | 3% 1 2 ou* ogF | av¥ a*
(P - T o e | SF T o F o]
or r* or oz o or" or dz" oz
*2 K2 ¥ xoos*
2u*r*p* + ¢ (Ff - é%—k + T éi;) =0 (107) )
oV or or
or
Radial- and Mixed-Flow Impeller with All Radial Blade Elements
The speed of rotation of the rotor can be increased by having all
blade elements radial. With Fp =0, the integrability equation (37a)
gives the result that FZ/Fur is a function of =z only. Thus, when
P ‘
_Z = r* fS(Z*) (108)
* .
equation (41) becomes
* 3
W F
p=tanﬁ=—‘$=-—z-=-r* £4(2%) (109) .
Wz Fu
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The principal ion is then

2
Tk 213 (X £5) gk a2k
[}+(r fz) ]ar*z - = SF YT

B PRI VA 85{] _ oufr¥ ok Effefécizf _ QEf) -
p* lgl+r T3 )Br* or* * dz* dz* 2T P oy*  \or* T dr¥/) ©
or* '
(110)

With F, = 0, wuse of the three auxiliary equations to compute Fr is

unnecessary.

Equation (110) is further simplified with JI/dr equal to zero if
the inlet flow i1s of the free-vortex type or has no whirl.

Simple Approximate Correction for Blade Thickness

If the blade is not quite thin, it is desirable to add a simple
approximate correction factor b in the definition of stream functions
of equation (38) as follows:

1
d T-1_-nd . '
b S¥ = rgfw, = ey, (111a)
d - *
v o_ ¥ *x7-1_-As
by, = - TOW.=-rh T=Le™B8Ty (111v)

A good conception of this thickness correction factor can be
obtained by analyzing the effect of blade thickness on the specific mass
flow along the mean streamline (based on mass flow) in two-dimensional
cascades. Yet unpublished calculations made for a typical subsonic tur-
bine cascade and two supersonic compressor cascades show that the
specific mass flow pW, on the mean streamline is about 4 and 10 per-
cent higher than that given by one-dimensional calculations correspond-
ing to the same reduction in channel area for the subsonic and super-
sonic cascades, respectively. The influence of the blade thickness
also extends a short distance upstream and downstream of the blades.

The shape of the mean streamline is also seen to follow approximately
the mean channel line, (but with lower curvature). When this correc-
tion factor b 1is used in equations (111), all the equations previously
obtained should be modified by replacing p by p/b.
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CONCLUDING REMARKS

Equations of motion and energy for unsteady, three-dimensional flow

of a nonviscous fluild are expressed in terms of gas quantities most con-
venient for analyzing flow in turbomachines. Entropy change due to
heat transfer in a cooled turbine and due to strong shock wave in super-
sonic flow can be taken into calculation.

The general equatlons are simplified according to the standard
assumption for steady through-flow calculation in turbomachines having
thin blades of high solidity. The problem is completely defined in
the direct problem with blade shape given; whereas in the inverse oOr
design problem, with the inclusion of the integrability condition for
the blade surface, either one flow variable or one relation among sever-
al variables can be prescribed by the designer.

Through the use of the stream function, the continuity equation
and the equation of motion in the radial direction are combined to form
a principal equation for the present problem. The principal equation
contains some terms that are either prescribed or to be determined by
other equations defining the problem. Two forms of the principal equa-
tion are obtained for the two main groups of current compressor and
turbine designs in which either the variation of tangential velocity
or the variation of the ratio of tangential to axial velocity through-
out the blade region are given. When the tangential velocity 1s given,
the principal equation is elliptic or hyperbolic depending on whether
the meridional velocity i1s subsonic or supersonic. When a relation
petween the tangential and axial velocity is given, the principal
equation becomes hyperbolic when the relative velocity is supersonic.

A general method of solution for both the elliptic and the hyper-
bolic cases is outlined. Specific applications of the theory to
several common types of compressor and turbine employing free-vortex,
symmetrical-velocity—diagram, solid-rotation, nontwisted-blade, and
radial-blade-element designs are discussed. A simple correction factor
for blade-thickness effect is also suggested.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, October 25, 1950.
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